
Chapter 2

Array-Based Lists

In this chapter, we will study implementations of the List and Queue in-
terfaces where the underlying data is stored in an array, called the backing
array. The following table summarizes the running times of operations
for the data structures presented in this chapter:

get(i)/set(i,x) add(i,x)/remove(i)
ArrayStack O(1) O(n− i)
ArrayDeque O(1) O(min{i,n− i})
DualArrayDeque O(1) O(min{i,n− i})
RootishArrayStack O(1) O(n− i)

Data structures that work by storing data in a single array have many
advantages and limitations in common:

• Arrays offer constant time access to any value in the array. This is
what allows get(i) and set(i,x) to run in constant time.

• Arrays are not very dynamic. Adding or removing an element near
the middle of a list means that a large number of elements in the
array need to be shifted to make room for the newly added element
or to fill in the gap created by the deleted element. This is why the
operations add(i,x) and remove(i) have running times that depend
on n and i.

• Arrays cannot expand or shrink. When the number of elements in
the data structure exceeds the size of the backing array, a new array
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§2.1 Array-Based Lists

needs to be allocated and the data from the old array needs to be
copied into the new array. This is an expensive operation.

The third point is important. The running times cited in the table above
do not include the cost associated with growing and shrinking the back-
ing array. We will see that, if carefully managed, the cost of growing and
shrinking the backing array does not add much to the cost of an aver-
age operation. More precisely, if we start with an empty data structure,
and perform any sequence of m add(i,x) or remove(i) operations, then
the total cost of growing and shrinking the backing array, over the entire
sequence of m operations is O(m). Although some individual operations
are more expensive, the amortized cost, when amortized over all m oper-
ations, is only O(1) per operation.

2.1 ArrayStack: Fast Stack Operations Using an Array

An ArrayStack implements the list interface using an array a, called the
backing array. The list element with index i is stored in a[i]. At most
times, a is larger than strictly necessary, so an integer n is used to keep
track of the number of elements actually stored in a. In this way, the list
elements are stored in a[0],. . . ,a[n− 1] and, at all times, a.length ≥ n.

ArrayStack
T[] a;
int n;
int size() {

return n;
}

2.1.1 The Basics

Accessing and modifying the elements of an ArrayStack using get(i) and
set(i,x) is trivial. After performing any necessary bounds-checking we
simply return or set, respectively, a[i].

ArrayStack
T get(int i) {
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ArrayStack: Fast Stack Operations Using an Array §2.1

return a[i];
}
T set(int i, T x) {

T y = a[i];
a[i] = x;
return y;

}

The operations of adding and removing elements from an ArrayStack
are illustrated in Figure 2.1. To implement the add(i,x) operation, we first
check if a is already full. If so, we call the method resize() to increase
the size of a. How resize() is implemented will be discussed later. For
now, it is sufficient to know that, after a call to resize(), we can be sure
that a.length > n. With this out of the way, we now shift the elements
a[i], . . . ,a[n− 1] right by one position to make room for x, set a[i] equal to
x, and increment n.

ArrayStack
void add(int i, T x) {

if (n + 1 > a.length) resize();
for (int j = n; j > i; j--)

a[j] = a[j-1];
a[i] = x;
n++;

}

If we ignore the cost of the potential call to resize(), then the cost of
the add(i,x) operation is proportional to the number of elements we have
to shift to make room for x. Therefore the cost of this operation (ignoring
the cost of resizing a) is O(n− i+ 1).

Implementing the remove(i) operation is similar. We shift the ele-
ments a[i+ 1], . . . ,a[n− 1] left by one position (overwriting a[i]) and de-
crease the value of n. After doing this, we check if n is getting much
smaller than a.length by checking if a.length ≥ 3n. If so, then we call
resize() to reduce the size of a.

ArrayStack
T remove(int i) {

T x = a[i];
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Figure 2.1: A sequence of add(i,x) and remove(i) operations on an ArrayStack.
Arrows denote elements being copied. Operations that result in a call to resize()
are marked with an asterisk.
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ArrayStack: Fast Stack Operations Using an Array §2.1

for (int j = i; j < n-1; j++)
a[j] = a[j+1];

n--;
if (a.length >= 3*n) resize();
return x;

}

If we ignore the cost of the resize() method, the cost of a remove(i)
operation is proportional to the number of elements we shift, which is
O(n− i).

2.1.2 Growing and Shrinking

The resize() method is fairly straightforward; it allocates a new array b
whose size is 2n and copies the n elements of a into the first n positions in
b, and then sets a to b. Thus, after a call to resize(), a.length = 2n.

ArrayStack
void resize() {

T[] b = newArray(max(n*2,1));
for (int i = 0; i < n; i++) {

b[i] = a[i];
}
a = b;

}

Analyzing the actual cost of the resize() operation is easy. It allocates
an array b of size 2n and copies the n elements of a into b. This takes O(n)
time.

The running time analysis from the previous section ignored the cost
of calls to resize(). In this section we analyze this cost using a technique
known as amortized analysis. This technique does not try to determine the
cost of resizing during each individual add(i,x) and remove(i) operation.
Instead, it considers the cost of all calls to resize() during a sequence of
m calls to add(i,x) or remove(i). In particular, we will show:

Lemma 2.1. If an empty ArrayList is created and any sequence of m ≥ 1
calls to add(i,x) and remove(i) are performed, then the total time spent dur-
ing all calls to resize() is O(m).
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§2.1 Array-Based Lists

Proof. We will show that any time resize() is called, the number of calls
to add or remove since the last call to resize() is at least n/2−1. Therefore,
if ni denotes the value of n during the ith call to resize() and r denotes
the number of calls to resize(), then the total number of calls to add(i,x)
or remove(i) is at least

r∑

i=1

(ni /2− 1) ≤m ,

which is equivalent to

r∑

i=1

ni ≤ 2m+ 2r .

On the other hand, the total time spent during all calls to resize() is

r∑

i=1

O(ni) ≤O(m+ r) =O(m) ,

since r is not more than m. All that remains is to show that the number
of calls to add(i,x) or remove(i) between the (i − 1)th and the ith call to
resize() is at least ni /2.

There are two cases to consider. In the first case, resize() is being
called by add(i,x) because the backing array a is full, i.e., a.length = n =
ni . Consider the previous call to resize(): after this previous call, the
size of a was a.length, but the number of elements stored in a was at
most a.length/2 = ni /2. But now the number of elements stored in a is
ni = a.length, so there must have been at least ni /2 calls to add(i,x) since
the previous call to resize().

The second case occurs when resize() is being called by remove(i)
because a.length ≥ 3n = 3ni . Again, after the previous call to resize()
the number of elements stored in a was at least a.length/2 − 1.1 Now
there are ni ≤ a.length/3 elements stored in a. Therefore, the number of

1The − 1 in this formula accounts for the special case that occurs when n = 0 and
a.length = 1.
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FastArrayStack: An Optimized ArrayStack §2.2

remove(i) operations since the last call to resize() is at least

R ≥ a.length/2− 1− a.length/3
= a.length/6− 1

= (a.length/3)/2− 1

≥ ni /2− 1 .

In either case, the number of calls to add(i,x) or remove(i) that occur
between the (i−1)th call to resize() and the ith call to resize() is at least
ni /2− 1, as required to complete the proof.

2.1.3 Summary

The following theorem summarizes the performance of an ArrayStack:

Theorem 2.1. An ArrayStack implements the List interface. Ignoring the
cost of calls to resize(), an ArrayStack supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + n− i) time per operation.

Furthermore, beginning with an empty ArrayStack and performing any se-
quence ofm add(i,x) and remove(i) operations results in a total ofO(m) time
spent during all calls to resize().

The ArrayStack is an efficient way to implement a Stack. In particu-
lar, we can implement push(x) as add(n,x) and pop() as remove(n− 1), in
which case these operations will run in O(1) amortized time.

2.2 FastArrayStack: An Optimized ArrayStack

Much of the work done by an ArrayStack involves shifting (by add(i,x)
and remove(i)) and copying (by resize()) of data. In the implementa-
tions shown above, this was done using for loops. It turns out that many
programming environments have specific functions that are very efficient
at copying and moving blocks of data. In the C programming language,
there are the memcpy(d,s,n) and memmove(d,s,n) functions. In the C++
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§2.3 Array-Based Lists

language there is the std :: copy(a0,a1,b) algorithm. In Java there is the
System.arraycopy(s,i,d,j,n) method.

FastArrayStack
void resize() {

T[] b = newArray(max(2*n,1));
System.arraycopy(a, 0, b, 0, n);
a = b;

}
void add(int i, T x) {

if (n + 1 > a.length) resize();
System.arraycopy(a, i, a, i+1, n-i);
a[i] = x;
n++;

}
T remove(int i) {

T x = a[i];
System.arraycopy(a, i+1, a, i, n-i-1);
n--;
if (a.length >= 3*n) resize();
return x;

}

These functions are usually highly optimized and may even use spe-
cial machine instructions that can do this copying much faster than we
could by using a for loop. Although using these functions does not
asymptotically decrease the running times, it can still be a worthwhile
optimization. In the Java implementations here, the use of the native
System.arraycopy(s,i,d,j,n) resulted in speedups of a factor between 2
and 3, depending on the types of operations performed. Your mileage
may vary.

2.3 ArrayQueue: An Array-Based Queue

In this section, we present the ArrayQueue data structure, which imple-
ments a FIFO (first-in-first-out) queue; elements are removed (using the
remove() operation) from the queue in the same order they are added (us-
ing the add(x) operation).
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ArrayQueue: An Array-Based Queue §2.3

Notice that an ArrayStack is a poor choice for an implementation of
a FIFO queue. It is not a good choice because we must choose one end of
the list upon which to add elements and then remove elements from the
other end. One of the two operations must work on the head of the list,
which involves calling add(i,x) or remove(i) with a value of i = 0. This
gives a running time proportional to n.

To obtain an efficient array-based implementation of a queue, we first
notice that the problem would be easy if we had an infinite array a. We
could maintain one index j that keeps track of the next element to remove
and an integer n that counts the number of elements in the queue. The
queue elements would always be stored in

a[j],a[j+ 1], . . . ,a[j+ n− 1] .

Initially, both j and n would be set to 0. To add an element, we would
place it in a[j+ n] and increment n. To remove an element, we would
remove it from a[j], increment j, and decrement n.

Of course, the problem with this solution is that it requires an infinite
array. An ArrayQueue simulates this by using a finite array a and modular
arithmetic. This is the kind of arithmetic used when we are talking about
the time of day. For example 10:00 plus five hours gives 3:00. Formally,
we say that

10 + 5 = 15 ≡ 3 (mod 12) .

We read the latter part of this equation as “15 is congruent to 3 modulo
12.” We can also treat mod as a binary operator, so that

15 mod 12 = 3 .

More generally, for an integer a and positive integerm, a mod m is the
unique integer r ∈ {0, . . . ,m − 1} such that a = r + km for some integer k.
Less formally, the value r is the remainder we get when we divide a by
m. In many programming languages, including Java, the mod operator
is represented using the % symbol.2

2This is sometimes referred to as the brain-dead mod operator, since it does not correctly
implement the mathematical mod operator when the first argument is negative.
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§2.3 Array-Based Lists

Modular arithmetic is useful for simulating an infinite array, since
i mod a.length always gives a value in the range 0, . . . ,a.length− 1. Us-
ing modular arithmetic we can store the queue elements at array locations

a[j%a.length],a[(j+ 1)%a.length], . . . ,a[(j+ n− 1)%a.length] .

This treats the array a like a circular array in which array indices larger
than a.length− 1 “wrap around” to the beginning of the array.

The only remaining thing to worry about is taking care that the num-
ber of elements in the ArrayQueue does not exceed the size of a.

ArrayQueue
T[] a;
int j;
int n;

A sequence of add(x) and remove() operations on an ArrayQueue is
illustrated in Figure 2.2. To implement add(x), we first check if a is full
and, if necessary, call resize() to increase the size of a. Next, we store x
in a[(j+ n)%a.length] and increment n.

ArrayQueue
boolean add(T x) {

if (n + 1 > a.length) resize();
a[(j+n) % a.length] = x;
n++;
return true;

}

To implement remove(), we first store a[j] so that we can return it
later. Next, we decrement n and increment j (modulo a.length) by set-
ting j = (j+ 1) mod a.length. Finally, we return the stored value of a[j].
If necessary, we may call resize() to decrease the size of a.

ArrayQueue
T remove() {

if (n == 0) throw new NoSuchElementException();
T x = a[j];
j = (j + 1) % a.length;
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Figure 2.2: A sequence of add(x) and remove(i) operations on an ArrayQueue.
Arrows denote elements being copied. Operations that result in a call to resize()
are marked with an asterisk.
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n--;
if (a.length >= 3*n) resize();
return x;

}

Finally, the resize() operation is very similar to the resize() opera-
tion of ArrayStack. It allocates a new array b of size 2n and copies

a[j],a[(j+ 1)%a.length], . . . ,a[(j+ n− 1)%a.length]

onto
b[0],b[1], . . . ,b[n− 1]

and sets j = 0.

ArrayQueue
void resize() {

T[] b = newArray(max(1,n*2));
for (int k = 0; k < n; k++)

b[k] = a[(j+k) % a.length];
a = b;
j = 0;

}

2.3.1 Summary

The following theorem summarizes the performance of the ArrayQueue
data structure:

Theorem 2.2. An ArrayQueue implements the (FIFO) Queue interface. Ig-
noring the cost of calls to resize(), an ArrayQueue supports the operations
add(x) and remove() inO(1) time per operation. Furthermore, beginning with
an empty ArrayQueue, any sequence ofm add(i,x) and remove(i) operations
results in a total of O(m) time spent during all calls to resize().

2.4 ArrayDeque: Fast Deque Operations Using an Array

The ArrayQueue from the previous section is a data structure for rep-
resenting a sequence that allows us to efficiently add to one end of the
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ArrayDeque: Fast Deque Operations Using an Array §2.4

sequence and remove from the other end. The ArrayDeque data structure
allows for efficient addition and removal at both ends. This structure im-
plements the List interface by using the same circular array technique
used to represent an ArrayQueue.

ArrayDeque
T[] a;
int j;
int n;

The get(i) and set(i,x) operations on an ArrayDeque are straightfor-
ward. They get or set the array element a[(j+ i) mod a.length].

ArrayDeque
T get(int i) {

return a[(j+i)%a.length];
}
T set(int i, T x) {

T y = a[(j+i)%a.length];
a[(j+i)%a.length] = x;
return y;

}

The implementation of add(i,x) is a little more interesting. As usual,
we first check if a is full and, if necessary, call resize() to resize a. Re-
member that we want this operation to be fast when i is small (close
to 0) or when i is large (close to n). Therefore, we check if i < n/2. If
so, we shift the elements a[0], . . . ,a[i− 1] left by one position. Otherwise
(i ≥ n/2), we shift the elements a[i], . . . ,a[n− 1] right by one position. See
Figure 2.3 for an illustration of add(i,x) and remove(x) operations on an
ArrayDeque.

ArrayDeque
void add(int i, T x) {

if (n+1 > a.length) resize();
if (i < n/2) { // shift a[0],..,a[i-1] left one position

j = (j == 0) ? a.length - 1 : j - 1; //(j-1)mod a.length
for (int k = 0; k <= i-1; k++)
a[(j+k)%a.length] = a[(j+k+1)%a.length];
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Figure 2.3: A sequence of add(i,x) and remove(i) operations on an ArrayDeque.
Arrows denote elements being copied.

} else { // shift a[i],..,a[n-1] right one position
for (int k = n; k > i; k--)
a[(j+k)%a.length] = a[(j+k-1)%a.length];

}
a[(j+i)%a.length] = x;
n++;

}

By doing the shifting in this way, we guarantee that add(i,x) never
has to shift more than min{i,n − i} elements. Thus, the running time
of the add(i,x) operation (ignoring the cost of a resize() operation) is
O(1 + min{i,n− i}).

The implementation of the remove(i) operation is similar. It either
shifts elements a[0], . . . ,a[i− 1] right by one position or shifts the ele-
ments a[i+ 1], . . . ,a[n− 1] left by one position depending on whether i <
n/2. Again, this means that remove(i) never spends more than O(1 +
min{i,n− i}) time to shift elements.

ArrayDeque
T remove(int i) {

T x = a[(j+i)%a.length];
if (i < n/2) { // shift a[0],..,[i-1] right one position

for (int k = i; k > 0; k--)
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a[(j+k)%a.length] = a[(j+k-1)%a.length];
j = (j + 1) % a.length;

} else { // shift a[i+1],..,a[n-1] left one position
for (int k = i; k < n-1; k++)
a[(j+k)%a.length] = a[(j+k+1)%a.length];

}
n--;
if (3*n < a.length) resize();
return x;

}

2.4.1 Summary

The following theorem summarizes the performance of the ArrayDeque
data structure:

Theorem 2.3. An ArrayDeque implements the List interface. Ignoring the
cost of calls to resize(), an ArrayDeque supports the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + min{i,n− i}) time per operation.

Furthermore, beginning with an empty ArrayDeque, performing any sequence
of m add(i,x) and remove(i) operations results in a total of O(m) time spent
during all calls to resize().

2.5 DualArrayDeque: Building a Deque from Two Stacks

Next, we present a data structure, the DualArrayDeque that achieves the
same performance bounds as an ArrayDeque by using two ArrayStacks.
Although the asymptotic performance of the DualArrayDeque is no bet-
ter than that of the ArrayDeque, it is still worth studying, since it offers a
good example of how to make a sophisticated data structure by combin-
ing two simpler data structures.

A DualArrayDeque represents a list using two ArrayStacks. Recall
that an ArrayStack is fast when the operations on it modify elements
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near the end. A DualArrayDeque places two ArrayStacks, called front
and back, back-to-back so that operations are fast at either end.

DualArrayDeque
List<T> front;
List<T> back;

A DualArrayDeque does not explicitly store the number, n, of ele-
ments it contains. It doesn’t need to, since it contains n = front.size() +
back.size() elements. Nevertheless, when analyzing the DualArrayDeque
we will still use n to denote the number of elements it contains.

DualArrayDeque
int size() {

return front.size() + back.size();
}

The front ArrayStack stores the list elements that whose indices are
0, . . . ,front.size()− 1, but stores them in reverse order. The back Array-
Stack contains list elements with indices in front.size(), . . . ,size()−1 in
the normal order. In this way, get(i) and set(i,x) translate into appro-
priate calls to get(i) or set(i,x) on either front or back, which takeO(1)
time per operation.

DualArrayDeque
T get(int i) {

if (i < front.size()) {
return front.get(front.size()-i-1);

} else {
return back.get(i-front.size());

}
}
T set(int i, T x) {

if (i < front.size()) {
return front.set(front.size()-i-1, x);

} else {
return back.set(i-front.size(), x);

}
}
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Figure 2.4: A sequence of add(i,x) and remove(i) operations on a DualArray-
Deque. Arrows denote elements being copied. Operations that result in a rebal-
ancing by balance() are marked with an asterisk.

Note that if an index i < front.size(), then it corresponds to the ele-
ment of front at position front.size()−i−1, since the elements of front
are stored in reverse order.

Adding and removing elements from a DualArrayDeque is illustrated
in Figure 2.4. The add(i,x) operation manipulates either front or back,
as appropriate:

DualArrayDeque
void add(int i, T x) {

if (i < front.size()) {
front.add(front.size()-i, x);

} else {
back.add(i-front.size(), x);

}
balance();

}

The add(i,x) method performs rebalancing of the two ArrayStacks
front and back, by calling the balance() method. The implementation
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of balance() is described below, but for now it is sufficient to know that
balance() ensures that, unless size() < 2, front.size() and back.size()
do not differ by more than a factor of 3. In particular, 3 · front.size() ≥
back.size() and 3 · back.size() ≥ front.size().

Next we analyze the cost of add(i,x), ignoring the cost of calls to
balance(). If i < front.size(), then add(i,x) gets implemented by the
call to front.add(front.size()− i− 1,x). Since front is an ArrayStack,
the cost of this is

O(front.size()− (front.size()− i− 1) + 1) =O(i+ 1) . (2.1)

On the other hand, if i ≥ front.size(), then add(i,x) gets implemented
as back.add(i− front.size(),x). The cost of this is

O(back.size()− (i− front.size()) + 1) =O(n− i+ 1) . (2.2)

Notice that the first case (2.1) occurs when i < n/4. The second case
(2.2) occurs when i ≥ 3n/4. When n/4 ≤ i < 3n/4, we cannot be sure
whether the operation affects front or back, but in either case, the op-
eration takes O(n) = O(i) = O(n − i) time, since i ≥ n/4 and n − i > n/4.
Summarizing the situation, we have

Running time of add(i,x) ≤


O(1 + i) if i < n/4
O(n) if n/4 ≤ i < 3n/4
O(1 + n− i) if i ≥ 3n/4

Thus, the running time of add(i,x), if we ignore the cost of the call to
balance(), is O(1 + min{i,n− i}).

The remove(i) operation and its analysis resemble the add(i,x) oper-
ation and analysis.

DualArrayDeque
T remove(int i) {

T x;
if (i < front.size()) {

x = front.remove(front.size()-i-1);
} else {

x = back.remove(i-front.size());
}
balance();
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return x;
}

2.5.1 Balancing

Finally, we turn to the balance() operation performed by add(i,x) and
remove(i). This operation ensures that neither front nor back becomes
too big (or too small). It ensures that, unless there are fewer than two
elements, each of front and back contain at least n/4 elements. If this
is not the case, then it moves elements between them so that front and
back contain exactly bn/2c elements and dn/2e elements, respectively.

DualArrayDeque
void balance() {

int n = size();
if (3*front.size() < back.size()) {

int s = n/2 - front.size();
List<T> l1 = newStack();
List<T> l2 = newStack();
l1.addAll(back.subList(0,s));
Collections.reverse(l1);
l1.addAll(front);
l2.addAll(back.subList(s, back.size()));
front = l1;
back = l2;

} else if (3*back.size() < front.size()) {
int s = front.size() - n/2;
List<T> l1 = newStack();
List<T> l2 = newStack();
l1.addAll(front.subList(s, front.size()));
l2.addAll(front.subList(0, s));
Collections.reverse(l2);
l2.addAll(back);
front = l1;
back = l2;

}
}

Here there is little to analyze. If the balance() operation does rebal-
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ancing, then it movesO(n) elements and this takesO(n) time. This is bad,
since balance() is called with each call to add(i,x) and remove(i). How-
ever, the following lemma shows that, on average, balance() only spends
a constant amount of time per operation.

Lemma 2.2. If an empty DualArrayDeque is created and any sequence of
m ≥ 1 calls to add(i,x) and remove(i) are performed, then the total time
spent during all calls to balance() is O(m).

Proof. We will show that, if balance() is forced to shift elements, then
the number of add(i,x) and remove(i) operations since the last time any
elements were shifted by balance() is at least n/2 − 1. As in the proof
of Lemma 2.1, this is sufficient to prove that the total time spent by
balance() is O(m).

We will perform our analysis using a technique knows as the potential
method. Define the potential, Φ , of the DualArrayDeque as the difference
in size between front and back:

Φ = |front.size()− back.size()| .

The interesting thing about this potential is that a call to add(i,x) or
remove(i) that does not do any balancing can increase the potential by
at most 1.

Observe that, immediately after a call to balance() that shifts ele-
ments, the potential, Φ0, is at most 1, since

Φ0 = |bn/2c − dn/2e| ≤ 1 .

Consider the situation immediately before a call to balance() that
shifts elements and suppose, without loss of generality, that balance()
is shifting elements because 3front.size() < back.size(). Notice that, in
this case,

n = front.size() + back.size()

< back.size()/3 + back.size()

=
4
3
back.size()
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Furthermore, the potential at this point in time is

Φ1 = back.size()− front.size()

> back.size()− back.size()/3

=
2
3
back.size()

>
2
3
× 3

4
n

= n/2

Therefore, the number of calls to add(i,x) or remove(i) since the last time
balance() shifted elements is at least Φ1 −Φ0 > n/2 − 1. This completes
the proof.

2.5.2 Summary

The following theorem summarizes the properties of a DualArrayDeque:

Theorem 2.4. A DualArrayDeque implements the List interface. Ignoring
the cost of calls to resize() and balance(), a DualArrayDeque supports the
operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + min{i,n− i}) time per operation.

Furthermore, beginning with an empty DualArrayDeque, any sequence of m
add(i,x) and remove(i) operations results in a total of O(m) time spent dur-
ing all calls to resize() and balance().

2.6 RootishArrayStack: A Space-Efficient Array Stack

One of the drawbacks of all previous data structures in this chapter is
that, because they store their data in one or two arrays and they avoid
resizing these arrays too often, the arrays frequently are not very full. For
example, immediately after a resize() operation on an ArrayStack, the
backing array a is only half full. Even worse, there are times when only
1/3 of a contains data.
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Figure 2.5: A sequence of add(i,x) and remove(i) operations on a RootishArray-
Stack. Arrows denote elements being copied.

In this section, we discuss the RootishArrayStack data structure, that
addresses the problem of wasted space. The RootishArrayStack stores
n elements using O(

√
n) arrays. In these arrays, at most O(

√
n) array lo-

cations are unused at any time. All remaining array locations are used
to store data. Therefore, these data structures waste at most O(

√
n) space

when storing n elements.
A RootishArrayStack stores its elements in a list of r arrays called

blocks that are numbered 0,1, . . . ,r − 1. See Figure 2.5. Block b contains
b+ 1 elements. Therefore, all r blocks contain a total of

1 + 2 + 3 + · · ·+ r = r(r+ 1)/2

elements. The above formula can be obtained as shown in Figure 2.6.

RootishArrayStack
List<T[]> blocks;
int n;

As we might expect, the elements of the list are laid out in order
within the blocks. The list element with index 0 is stored in block 0,
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r
...

. . .

...
. . .

. . .

r+1

Figure 2.6: The number of white squares is 1+2+3+ · · ·+r. The number of shaded
squares is the same. Together the white and shaded squares make a rectangle
consisting of r(r+ 1) squares.

elements with list indices 1 and 2 are stored in block 1, elements with list
indices 3, 4, and 5 are stored in block 2, and so on. The main problem
we have to address is that of determining, given an index i, which block
contains i as well as the index corresponding to i within that block.

Determining the index of i within its block turns out to be easy. If
index i is in block b, then the number of elements in blocks 0, . . . ,b− 1 is
b(b+ 1)/2. Therefore, i is stored at location

j = i− b(b+ 1)/2

within block b. Somewhat more challenging is the problem of determin-
ing the value of b. The number of elements that have indices less than or
equal to i is i+ 1. On the other hand, the number of elements in blocks
0,. . . ,b is (b+ 1)(b+ 2)/2. Therefore, b is the smallest integer such that

(b+ 1)(b+ 2)/2 ≥ i+ 1 .

We can rewrite this equation as

b2 + 3b− 2i ≥ 0 .

The corresponding quadratic equation b2 + 3b− 2i = 0 has two solutions:
b = (−3 +

√
9 + 8i)/2 and b = (−3−√9 + 8i)/2. The second solution makes

no sense in our application since it always gives a negative value. There-
fore, we obtain the solution b = (−3 +

√
9 + 8i)/2. In general, this solution
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is not an integer, but going back to our inequality, we want the smallest
integer b such that b ≥ (−3 +

√
9 + 8i)/2. This is simply

b =
⌈
(−3 +

√
9 + 8i)/2

⌉
.

RootishArrayStack
int i2b(int i) {
double db = (-3.0 + Math.sqrt(9 + 8*i)) / 2.0;
int b = (int)Math.ceil(db);
return b;

}

With this out of the way, the get(i) and set(i,x) methods are straight-
forward. We first compute the appropriate block b and the appropriate
index j within the block and then perform the appropriate operation:

RootishArrayStack
T get(int i) {

int b = i2b(i);
int j = i - b*(b+1)/2;
return blocks.get(b)[j];

}
T set(int i, T x) {

int b = i2b(i);
int j = i - b*(b+1)/2;
T y = blocks.get(b)[j];
blocks.get(b)[j] = x;
return y;

}

If we use any of the data structures in this chapter for representing
the blocks list, then get(i) and set(i,x) will each run in constant time.

The add(i,x) method will, by now, look familiar. We first check to see
if our data structure is full, by checking if the number of blocks r is such
that r(r + 1)/2 = n. If so, we call grow() to add another block. With this
done, we shift elements with indices i, . . . ,n−1 to the right by one position
to make room for the new element with index i:
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RootishArrayStack
void add(int i, T x) {

int r = blocks.size();
if (r*(r+1)/2 < n + 1) grow();
n++;
for (int j = n-1; j > i; j--)

set(j, get(j-1));
set(i, x);

}

The grow() method does what we expect. It adds a new block:

RootishArrayStack
void grow() {

blocks.add(newArray(blocks.size()+1));
}

Ignoring the cost of the grow() operation, the cost of an add(i,x) oper-
ation is dominated by the cost of shifting and is thereforeO(1+n−i), just
like an ArrayStack.

The remove(i) operation is similar to add(i,x). It shifts the elements
with indices i+1, . . . ,n left by one position and then, if there is more than
one empty block, it calls the shrink() method to remove all but one of the
unused blocks:

RootishArrayStack
T remove(int i) {

T x = get(i);
for (int j = i; j < n-1; j++)

set(j, get(j+1));
n--;
int r = blocks.size();
if ((r-2)*(r-1)/2 >= n) shrink();
return x;

}

RootishArrayStack
void shrink() {

int r = blocks.size();
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while (r > 0 && (r-2)*(r-1)/2 >= n) {
blocks.remove(blocks.size()-1);
r--;

}
}

Once again, ignoring the cost of the shrink() operation, the cost of a
remove(i) operation is dominated by the cost of shifting and is therefore
O(n− i).

2.6.1 Analysis of Growing and Shrinking

The above analysis of add(i,x) and remove(i) does not account for the
cost of grow() and shrink(). Note that, unlike the ArrayStack.resize()
operation, grow() and shrink() do not copy any data. They only allocate
or free an array of size r. In some environments, this takes only constant
time, while in others, it may require time proportional to r.

We note that, immediately after a call to grow() or shrink(), the situ-
ation is clear. The final block is completely empty, and all other blocks
are completely full. Another call to grow() or shrink() will not happen
until at least r−1 elements have been added or removed. Therefore, even
if grow() and shrink() take O(r) time, this cost can be amortized over at
least r− 1 add(i,x) or remove(i) operations, so that the amortized cost of
grow() and shrink() is O(1) per operation.

2.6.2 Space Usage

Next, we analyze the amount of extra space used by a RootishArray-
Stack. In particular, we want to count any space used by a Rootish-
ArrayStack that is not an array element currently used to hold a list ele-
ment. We call all such space wasted space.

The remove(i) operation ensures that a RootishArrayStack never has
more than two blocks that are not completely full. The number of blocks,
r, used by a RootishArrayStack that stores n elements therefore satisfies

(r− 2)(r− 1) ≤ n .
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Again, using the quadratic equation on this gives

r ≤ (3 +
√

1 + 4n)/2 =O(
√
n) .

The last two blocks have sizes r and r− 1, so the space wasted by these
two blocks is at most 2r−1 =O(

√
n). If we store the blocks in (for example)

an ArrayList, then the amount of space wasted by the List that stores
those r blocks is also O(r) =O(

√
n). The other space needed for storing n

and other accounting information is O(1). Therefore, the total amount of
wasted space in a RootishArrayStack is O(

√
n).

Next, we argue that this space usage is optimal for any data structure
that starts out empty and can support the addition of one item at a time.
More precisely, we will show that, at some point during the addition of
n items, the data structure is wasting an amount of space at least in

√
n

(though it may be only wasted for a moment).
Suppose we start with an empty data structure and we add n items one

at a time. At the end of this process, all n items are stored in the structure
and distributed among a collection of r memory blocks. If r ≥ √n, then
the data structure must be using r pointers (or references) to keep track
of these r blocks, and these pointers are wasted space. On the other hand,
if r <

√
n then, by the pigeonhole principle, some block must have a size

of at least n/r >
√
n. Consider the moment at which this block was first

allocated. Immediately after it was allocated, this block was empty, and
was therefore wasting

√
n space. Therefore, at some point in time during

the insertion of n elements, the data structure was wasting
√
n space.

2.6.3 Summary

The following theorem summarizes our discussion of the RootishArray-
Stack data structure:

Theorem 2.5. A RootishArrayStack implements the List interface. Ignor-
ing the cost of calls to grow() and shrink(), a RootishArrayStack supports
the operations

• get(i) and set(i,x) in O(1) time per operation; and

• add(i,x) and remove(i) in O(1 + n− i) time per operation.
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Furthermore, beginning with an empty RootishArrayStack, any sequence
of m add(i,x) and remove(i) operations results in a total of O(m) time spent
during all calls to grow() and shrink().

The space (measured in words)3 used by a RootishArrayStack that stores
n elements is n+O(

√
n).

2.6.4 Computing Square Roots

A reader who has had some exposure to models of computation may no-
tice that the RootishArrayStack, as described above, does not fit into the
usual word-RAM model of computation (Section 1.4) because it requires
taking square roots. The square root operation is generally not consid-
ered a basic operation and is therefore not usually part of the word-RAM
model.

In this section, we show that the square root operation can be imple-
mented efficiently. In particular, we show that for any integer x ∈ {0, . . . ,n},
b√xc can be computed in constant-time, after O(

√
n) preprocessing that

creates two arrays of length O(
√
n). The following lemma shows that we

can reduce the problem of computing the square root of x to the square
root of a related value x′ .

Lemma 2.3. Let x ≥ 1 and let x′ = x−a, where 0 ≤ a ≤ √x. Then
√
x′ ≥ √x−1.

Proof. It suffices to show that

√
x−√x ≥ √x− 1 .

Square both sides of this inequality to get

x−√x ≥ x− 2
√
x+ 1

and gather terms to get
√
x ≥ 1

which is clearly true for any x ≥ 1.

3Recall Section 1.4 for a discussion of how memory is measured.
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Start by restricting the problem a little, and assume that 2r ≤ x < 2r+1,
so that blogxc = r, i.e., x is an integer having r + 1 bits in its binary rep-
resentation. We can take x′ = x− (x mod 2br/2c). Now, x′ satisfies the con-
ditions of Lemma 2.3, so

√
x − √x′ ≤ 1. Furthermore, x′ has all of its

lower-order br/2c bits equal to 0, so there are only

2r+1−br/2c ≤ 4 · 2r/2 ≤ 4
√
x

possible values of x′ . This means that we can use an array, sqrttab, that
stores the value of b√x′c for each possible value of x′ . A little more pre-
cisely, we have

sqrttab[i] =
⌊√
i2br/2c

⌋
.

In this way, sqrttab[i] is within 2 of
√
x for all x ∈ {i2br/2c, . . . , (i+1)2br/2c−

1}. Stated another way, the array entry s = sqrttab[x>>br/2c] is either
equal to b√xc, b√xc−1, or b√xc−2. From s we can determine the value of
b√xc by incrementing s until (s+ 1)2 > x.

FastSqrt
int sqrt(int x, int r) {

int s = sqrtab[x>>r/2];
while ((s+1)*(s+1) <= x) s++; // executes at most twice
return s;

}

Now, this only works for x ∈ {2r, . . . ,2r+1 − 1} and sqrttab is a special
table that only works for a particular value of r = blogxc. To overcome
this, we could compute blognc different sqrttab arrays, one for each pos-
sible value of blogxc. The sizes of these tables form an exponential se-
quence whose largest value is at most 4

√
n, so the total size of all tables is

O(
√
n).

However, it turns out that more than one sqrttab array is unneces-
sary; we only need one sqrttab array for the value r = blognc. Any value
x with logx = r′ < r can be upgraded by multiplying x by 2r−r′ and using
the equation √

2r−r′x = 2(r−r′)/2√x .

The quantity 2r−r′x is in the range {2r, . . . ,2r+1 − 1} so we can look up
its square root in sqrttab. The following code implements this idea to
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compute b√xc for all non-negative integers x in the range {0, . . . ,230 − 1}
using an array, sqrttab, of size 216.

FastSqrt
int sqrt(int x) {

int rp = log(x);
int upgrade = ((r-rp)/2) * 2;
int xp = x << upgrade; // xp has r or r-1 bits
int s = sqrtab[xp>>(r/2)] >> (upgrade/2);
while ((s+1)*(s+1) <= x) s++; // executes at most twice
return s;

}

Something we have taken for granted thus far is the question of how
to compute r′ = blogxc. Again, this is a problem that can be solved with
an array, logtab, of size 2r/2. In this case, the code is particularly simple,
since blogxc is just the index of the most significant 1 bit in the binary
representation of x. This means that, for x > 2r/2, we can right-shift the
bits of x by r/2 positions before using it as an index into logtab. The
following code does this using an array logtab of size 216 to compute
blogxc for all x in the range {1, . . . ,232 − 1}.

FastSqrt
int log(int x) {

if (x >= halfint)
return 16 + logtab[x>>>16];

return logtab[x];
}

Finally, for completeness, we include the following code that initial-
izes logtab and sqrttab:

FastSqrt
void inittabs() {

sqrtab = new int[1<<(r/2)];
logtab = new int[1<<(r/2)];
for (int d = 0; d < r/2; d++)

Arrays.fill(logtab, 1<<d, 2<<d, d);
int s = 1<<(r/4); // sqrt(2ˆ(r/2))
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for (int i = 0; i < 1<<(r/2); i++) {
if ((s+1)*(s+1) <= i << (r/2)) s++; // sqrt increases
sqrtab[i] = s;

}
}

To summarize, the computations done by the i2b(i) method can be
implemented in constant time on the word-RAM usingO(

√
n) extra mem-

ory to store the sqrttab and logtab arrays. These arrays can be rebuilt
when n increases or decreases by a factor of two, and the cost of this re-
building can be amortized over the number of add(i,x) and remove(i)
operations that caused the change in n in the same way that the cost of
resize() is analyzed in the ArrayStack implementation.

2.7 Discussion and Exercises

Most of the data structures described in this chapter are folklore. They
can be found in implementations dating back over 30 years. For example,
implementations of stacks, queues, and deques, which generalize eas-
ily to the ArrayStack, ArrayQueue and ArrayDeque structures described
here, are discussed by Knuth [46, Section 2.2.2].

Brodnik et al. [13] seem to have been the first to describe the Rootish-
ArrayStack and prove a

√
n lower-bound like that in Section 2.6.2. They

also present a different structure that uses a more sophisticated choice
of block sizes in order to avoid computing square roots in the i2b(i)
method. Within their scheme, the block containing i is block blog(i+ 1)c,
which is simply the index of the leading 1 bit in the binary representation
of i+1. Some computer architectures provide an instruction for comput-
ing the index of the leading 1-bit in an integer.

A structure related to the RootishArrayStack is the two-level tiered-
vector of Goodrich and Kloss [35]. This structure supports the get(i,x)
and set(i,x) operations in constant time and add(i,x) and remove(i) in
O(
√
n) time. These running times are similar to what can be achieved with

the more careful implementation of a RootishArrayStack discussed in
Exercise 2.11.
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Exercise 2.1. In the ArrayStack implementation, after the first call to
remove(i), the backing array, a, contains n + 1 non-null values despite
the fact that the ArrayStack only contains n elements. Where is the extra
non-null value? Discuss any consequences this non-null value might
have on the Java Runtime Environment’s memory manager.

Exercise 2.2. The List method addAll(i,c) inserts all elements of the
Collection c into the list at position i. (The add(i,x) method is a special
case where c = {x}.) Explain why, for the data structures in this chapter,
it is not efficient to implement addAll(i,c) by repeated calls to add(i,x).
Design and implement a more efficient implementation.

Exercise 2.3. Design and implement a RandomQueue. This is an imple-
mentation of the Queue interface in which the remove() operation removes
an element that is chosen uniformly at random among all the elements
currently in the queue. (Think of a RandomQueue as a bag in which we
can add elements or reach in and blindly remove some random element.)
The add(x) and remove() operations in a RandomQueue should run in con-
stant time per operation.

Exercise 2.4. Design and implement a Treque (triple-ended queue). This
is a List implementation in which get(i) and set(i,x) run in constant
time and add(i,x) and remove(i) run in time

O(1 + min{i,n− i, |n/2− i|}) .

In other words, modifications are fast if they are near either end or near
the middle of the list.

Exercise 2.5. Implement a method rotate(a,r) that “rotates” the array a
so that a[i] moves to a[(i+ r) mod a.length], for all i ∈ {0, . . . ,a.length}.
Exercise 2.6. Implement a method rotate(r) that “rotates” a List so that
list item i becomes list item (i+ r) mod n. When run on an ArrayDeque,
or a DualArrayDeque, rotate(r) should run in O(1 + min{r,n− r}) time.

Exercise 2.7. Modify the ArrayDeque implementation so that the shift-
ing done by add(i,x), remove(i), and resize() is done using the faster
System.arraycopy(s,i,d,j,n) method.
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Exercise 2.8. Modify the ArrayDeque implementation so that it does not
use the % operator (which is expensive on some systems). Instead, it
should make use of the fact that, if a.length is a power of 2, then

k%a.length = k&(a.length− 1) .

(Here, & is the bitwise-and operator.)

Exercise 2.9. Design and implement a variant of ArrayDeque that does
not do any modular arithmetic at all. Instead, all the data sits in a con-
secutive block, in order, inside an array. When the data overruns the
beginning or the end of this array, a modified rebuild() operation is per-
formed. The amortized cost of all operations should be the same as in an
ArrayDeque.
Hint: Getting this to work is really all about how you implement the
rebuild() operation. You would like rebuild() to put the data structure
into a state where the data cannot run off either end until at least n/2
operations have been performed.

Test the performance of your implementation against the ArrayDeque.
Optimize your implementation (by using System.arraycopy(a,i,b,i,n))
and see if you can get it to outperform the ArrayDeque implementation.

Exercise 2.10. Design and implement a version of a RootishArrayStack
that has only O(

√
n) wasted space, but that can perform add(i,x) and

remove(i,x) operations in O(1 + min{i,n− i}) time.

Exercise 2.11. Design and implement a version of a RootishArrayStack
that has only O(

√
n) wasted space, but that can perform add(i,x) and

remove(i,x) operations in O(1 + min{√n,n−i}) time. (For an idea on how
to do this, see Section 3.3.)

Exercise 2.12. Design and implement a version of a RootishArrayStack
that has only O(

√
n) wasted space, but that can perform add(i,x) and

remove(i,x) operations in O(1 + min{i,√n,n − i}) time. (See Section 3.3
for ideas on how to achieve this.)

Exercise 2.13. Design and implement a CubishArrayStack. This three
level structure implements the List interface usingO(n2/3) wasted space.
In this structure, get(i) and set(i,x) take constant time; while add(i,x)
and remove(i) take O(n1/3) amortized time.
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